
Faithfully Explaining Rankings in a News Recommender System

Maartje ter Hoeve
∗

University of Amsterdam

Amsterdam, �e Netherlands

m.a.terhoeve@uva.nl

Anne Schuth
†

Blendle Research

Utrecht, �e Netherlands

anne.schuth@gmail.com

Daan Odijk
‡

Blendle Research

Utrecht, �e Netherlands

daan@blendle.com

Maarten de Rijke

University of Amsterdam

Amsterdam, �e Netherlands

derijke@uva.nl

ABSTRACT
�ere is an increasing demand for algorithms to explain their out-

comes. So far, there is no method that explains the rankings pro-

duced by a ranking algorithm. To address this gap we propose

LISTEN, a LISTwise ExplaiNer, to explain rankings produced by

a ranking algorithm. To e�ciently use LISTEN in production, we

train a neural network to learn the underlying explanation space

created by LISTEN; we call this model Q-LISTEN. We show that

LISTEN produces faithful explanations and that Q-LISTEN is able

to learn these explanations. Moreover, we show that LISTEN is safe

to use in a real world environment: users of a news recommenda-

tion system do not behave signi�cantly di�erently when they are

exposed to explanations generated by LISTEN instead of manually

generated explanations.

CCS CONCEPTS
•Information systems→ Presentation of retrieval results; Recom-

mender systems;

KEYWORDS
Explainability, ranking, algorithmic transparency

1 INTRODUCTION
�ere is an increasing demand for data-driven methods to be ex-

plainable. �is has especially become relevant these days, since

on the 14th of April 2017, the General Data Protection Regulation

(GDPR) was approved by the EU parliament and it will be enforced

on the 25th of May, 2018. Amongst others the GDPR states that we

need to be able to explain algorithmic decisions. Explainability of

machine learning algorithms has received considerable a�ention

from the research community [e.g., 3, 14, 25, 35, 36]. In the context

of information retrieval, research by ter Hoeve et al. [33] shows

that users clearly state that they would like to receive explanations

for their personalized news selection, which is presented to them as

a ranked list. Despite this, the explainability of ranking algorithms

has never been fully addressed.

Explaining a ranking is the challenge that we address in this paper.

Previous research has focussed on explaining single data points.

E.g., one could focus on the explanation of a single recommendation

or a single classi�cation [e.g., 12, 28, 29]. However, a ranking can

only be explained by looking at all items in the ranking — the

∗
Research performed while intern at Blendle.

†
Now at De Persgroep, Amsterdam.

‡
Now at RTL.

position of an item in a ranking is dependent on the other items

that also occur in this ranking.

Importantly, any method to explain a ranking should faithfully

explain the outcome of the ranking algorithm. By faithful we mean

that we want our explainer to solely base its explanations on the

underlying structure of the algorithm. Naturally, the best explana-

tion of an algorithm is the underlying structure of the algorithm

itself. However, even for experts in the �eld, these explanations

may be uninterpretable. �erefore, we also want our explanations

to be interpretable. Doshi-Velez and Kim [7] de�ne interpretability
as: “the ability to explain or to present in understandable terms to a
human.” In this spirit we aim to �nd the most important causes of

an event that can be mapped directly to a human understandable

message.
1

We aim to be able to explain the rankings produced

by any type of ranking algorithm and as such we also want any

proposed explainer to be model-agnostic.
In this paper, we introduce a faithful approach to explain rank-

ing algorithms: LISTEN — a LISTwise ExplaiNer. �e design of

LISTEN is based on the intuition that we can �nd the importance

of ranking features by perturbing their values and by measuring

to what degree the ranking changes due to that. Subsequently, we

design and train a neural network, Q-LISTEN, that learns expla-

nations generated by LISTEN and is su�ciently e�cient to run

in a production environment. In other words, we contribute an

explanation pipeline for rankings that can run in real-time and that

can therefore be used in real-life applications.

We address the following research questions:

RQ1 Do LISTEN and Q-LISTEN produce faithful explanations of

rankings?

RQ2 Does the type of explanation a�ect the users’ behavior?

As to RQ2, we are keen to �nd out whether the reading behavior

of users who are provided with faithful and model-agnostic expla-

nations for a personalized ranked selection of news articles di�ers

from the reading behavior of users who are provided with heuristic

explanations for their personalized ranked selection of news arti-

cles. Our goal is to provide users with faithful explanations of the

occurrence of items in their rankings. It is not our goal to a�ect

users’ reading behavior by providing them with explanations.

In the remainder of this paper, we �rst describe the di�erence

between explaining a ranking and explaining a single item in a

ranking in more detail. We also present the problem se�ing in

which we conducted this research. In Section 2, we present the

relevant related work and in Section 3 we present our design of

1
While automatically generating a natural language statement as an explanation of a

ranking is an interesting research direction, it is not part of the focus of this paper.

ar
X

iv
:1

80
5.

05
44

7v
1 

 [
cs

.A
I]

  1
4 

M
ay

 2
01

8



LISTEN and Q-LISTEN. Section 4 gives our experimental setup. In

Section 5, we present our results and answer our research questions.

We end with a discussion and conclusion in Section 6.

1.1 Approaches to explaining rankings
To motivate our work and get an intuition for our approach, imag-

ine a ranking algorithm that uses a simple linear ranking scoring

function to compute the relevance of particular items. �e ranking

function is given by

score(x0,x1,x2) = 0.2x0 + 0.3x1 + 0.5x2, (1)

where x0, x1 and x2 are features. In a real application these could be

features that describe characteristics of the item, the user, general

features such as the current season or time, etc. In this example,

the feature x0 and x1 can take on values in the range [0, 1] and x2

can take on values in the range [0.6, 1]. Assume that we have a

ranking with three items described by the feature value matrix

x0 x1 x2 score
d0 1 1 1 1

d1 0.5 0.5 1 0.75

d2 1 0 0.7 0.55

where the last column is the score computed by Eq. 1 and d stands

for document. Our task is to explain this ranking. �ere are at least

two possible approaches. We could focus on a single document and

its corresponding score and mark the feature that contributed most

to the score as the most important feature and, hence, give this

feature as explanation for why this document is selected for this

ranking. �is is a pointwise explanation, because it only takes one

item, i.e., one point, in the ranking into account when explaining the

occurrence of that item in the ranking. One important shortcoming

of this approach is that it does not explain the rank of a particular

item — it just explains its score. In order to explain the rank of an

item, one needs to take all other items in the ranking into account

as well. �is is the listwise approach, because it considers the entire

list of items for its explanations. Below we give an example to show

the di�erence between the two approaches: the pointwise approach

on the one hand and the listwise approach on the other hand.

We use the feature value matrix that we introduced above and

we want to �nd the most important feature for the �rst item in the

ranking, d0. A pointwise approach would mark feature x2 as most

important, as this feature value, together with its corresponding

weight, contributes most to the score of the �rst document. In

contrast, a listwise method would mark feature x1 as most impor-

tant, because feature x1 is able to change the ranking, whereas the

feature x2 is not. If we change the feature value of feature x2 to 0.6,

the lowest possible value, the score of d0 becomes 0.8, which still

places d0 on top of the list. But if we change the value of feature x1

to its lowest possible value, namely 0, the score of d0 becomes 0.7
which places d0 below d1 and hence changes the ranking. �is is

the behavior that we want to capture in our explanations.

We can construct a similar example if we look at d2. Again,

the pointwise explanation would mark x2 as the most important

feature, as this feature value and its weight make the score go up

most. A listwise explanation would mark feature x1 as the most

important feature, something a pointwise explanation would not

do, as 0.3 · 0 = 0. However, a listwise explanation would �nd

that feature x2 is not able to change the ranking. Changing it to

the largest possible value, 1, would change the score to 0.7, and

changing x2 to its lowest possible value would make the score be

0.45; both changes leave the ranking as it is. But changing x1 to 1

would give d2 the second position in the ranking, above d1 as then

the score would become 0.85.

�ese two examples show that a pointwise explanation method

does not capture the behavior that we want to explain. Alternatively,

a pairwise explanation method, where we would only compare pairs

of items in the ranking, would not su�ce either; for similar reasons

as in the pointwise case, this would not allow us to capture the

behavior that we want to explain. In contrast, listwise explanations

do capture the right behavior. Another observation that motivates

us to design listwise explanations is that many-state-of-the-art

ranking algorithms are optimized to learn an entire ranking, instead

of individual scores of items in a ranking. �erefore, a listwise

explanation style is the only way to provide faithful explanations

for these types of ranking functions. Here we only considered two

examples, but similar reasoning holds for more complex ones.

We aim to develop a faithful listwise explanation method and

compare this to a heuristic pointwise explanation method baseline.

In the context of ranking algorithms, we de�ne a pointwise explana-
tion to be an explanation that only takes the score of an individual

item into account. We de�ne a listwise explanation to be an expla-

nation that takes the entire ranking into account. What a listwise

explanation could look like in practice is non-trivial. We address

this question in Section 3. We develop and test our approach to

construct listwise explanations on a production news recommender

system. Below we brie�y describe our problem se�ing.

1.2 Problem setting
We conduct this study in the se�ing of Blendle. Every day, Blendle

users receive a personalized selection of news articles from a wide

variety of newspapers. �ese articles are selected based on a num-

ber of features that capture users’ reading behavior and topical

interests. �ese features are summarized in Table 1. Blendle has

performed a feature analysis to make sure these features are uncor-

related. To the best of our knowledge, the approach Blendle takes

is representative for many personalized recommender systems that

run in production. On top of this, Blendle users also receive a

number of must reads every day; these articles are selected by the

editorial sta� and are the same for everyone. �is is one of the ways

to help prevent users from ending up in their own �lter bubble.

�e editorial sta� manually writes a small summary, or recommen-

dation, for each of the selected articles that users can read before

they decide to open the article. Blendle allows users to purchase a

single news article instead of having to buy an entire newspaper

(using micropayments) or to prepay via a subscription for their

personal selection. Users have the possibility to receive a refund

for an article if they are not satis�ed with it.

2 RELATEDWORK
�e notion of explanation and its goal has been the subject of many

studies, especially in the social sciences. Miller et al. [24] and Doshi-

Velez and Kim [7] give an extensive overview of this research and

how it can be applied to the �eld of arti�cial intelligence. Based on

this overview, we de�ne the goal of an explanation in this research

to faithfully give the underlying cause of an event. In Section 1 we

introduced the notion of faithful. To de�ne the notion more thor-

oughly we build on [36], where two kinds of explanation styles are

introduced: justi�cations and descriptions. Justi�cations focus on

providing conceptual explanations that do not necessarily expose



Table 1: Features used by the production news recommender
at the time of writing, numbered.

Feature Feature description

f0 item rating score

f1 item pick probability

f2 item number of images

f3 item topic followed by user

f4 item newspaper followed by user

f5 user purchased topic score

f6 user purchased newspaper score

f7 user item negative topic feedback

f8 user item negative newspaper feedback

the underlying structure of the algorithm, whereas descriptions are

meant to do exactly that. We aim to provide descriptions instead

of justi�cations, as one of our main goals is to provide faithful ex-

planations, that are solely based on the underlying structure of the

algorithm. Descriptions can be local or global. Local descriptions

only explain the underlying structure of a particular part of the

model, whereas global descriptions aim to explain the entire model,

thereby not allowing for simpli�cations of the model by only look-

ing at a particular part of the model. We aim to construct global

explanations, as this increases the faithfulness of the explanation.

Below, we present related work on explainability in machine

learning, on feature selection and on learning to rank.

2.1 Explainability in machine learning
Previously, many studies that focus on the explainability of ma-

chine learning algorithms have been conducted from a Human

Computer Interaction angle [e.g., 3, 14, 33, 34]. �at is, questions

are asked such as “how do users interact with the system and how

can explanations help with this?” �ese studies do not focus on

how to construct faithful explanations to describe the underlying

decisions of the algorithm. Instead, explanations are made up to

give users an idea of what the explanations could be like. Recently

the focus is changing towards describing the training process [e.g.,

19, 31] and towards the underlying algorithm [e.g., 1, 13, 25, 36].

�e la�er helps to increase the faithfulness of the explanations [27].

Hechtlinger [12] and Ross et al. [29] use the gradients of the

output probability of a model with respect to the input to de�ne

feature importance in a predictive model. �e importance scores

are used to interpret the behavior of the model. �is is an intuitive

approach, yet one important prerequisite of using this method

is that the models are di�erentiable with respect to their inputs.

However desirable, this is not a property of all models. For example,

the state-of-the-art LambdaMart ranking algorithm [4] lacks this

property. �e approaches by Hechtlinger and Ross et al. focus on a

single data point — they are pointwise instead of listwise.
Ribeiro et al. [28] introduce LIME, a method that can be used to

locally explain the classi�cations of any classi�er. �ree important

characteristics underlie the construction of LIME: an explaining

model needs to be (1) “interpretable,” (2) “locally faithful,” and (3)

“model-agnostic,” which Ribeiro et al. de�ne as (1) “provide quali-
tative understanding between the input variables and the response,”
(2) the explanation “must correspond to how the model behaves in
the vicinity of the instance being predicted,” and (3) “the explanation
should be able to explain any model, respectively. Ribeiro et al. pro-

vide linear models, decision trees and falling rule lists as examples

of interpretable models. �ere are two important reasons why we

cannot use LIME to explain a ranking. First, LIME is designed to

explain the decisions of classi�ers, whereas we aim to explain a

ranking function. Secondly, even if we would adapt LIME in such

a way that we treat the ranking function as a classi�er (for exam-

ple by binning the outputs) LIME only aims to be locally faithful

and therefore it will produce pointwise explanations instead of the

listwise explanations that we aim for.

2.2 Feature selection
We can use some of the intuitions that are used in the feature

selection research to solve our current problem. �e goal of feature

selection is to �nd a relevant subset of features for a model. �ere is

a substantial amount of research on this topic [e.g., 2, 5, 8, 15, 20, 21].

Many studies aim to �nd the set of features that maximize the

importance of the features in the set and minimize the similarity

of features in the set. Finding the importance scores for features is

related to the explainability question addressed in this paper. �e

di�erence is that we try to �nd features that are important for an

item’s position in the ranking, whereas feature selection techniques

aim to �nd important features for the entire set.

Ba�iti [2] uses Shannon’s entropy [30] to select new features

for classi�cation problems. Features that contain most information

and therefore decrease the uncertainty about a classi�cation are

selected. Several studies use dimensionality reduction techniques

such as PCA for feature selection [23, 38]. Geng et al. [8] design a

feature selection method for ranking. �ey measure the importance

of features by metrics such as MAP, NDCG and loss functions such

as pairwise ranking errors. Similarity between features is measured

by measuring similarity of the resulting rankings. Hua et al. [15]

compute feature similarity in the same fashion. A�er that, they

cluster features based on their similarity scores. Only a single

feature from each cluster is selected. We use ranking similarity as

a metric to measure how features are able to change a ranking.

2.3 Learning to rank
Ranking is used in several domains [e.g., 6, 11, 26], from building

search engine result pages, where a user has a speci�c query for

the search engine, to domains in which a user has a less speci�c

query yet is expecting to see results, such as the timelines on so-

cial networks, or personalized news selection of news as in our

work. Producing e�ective ranking algorithms is the aim of learning

to rank. Learning to rank approaches can be divided into point-
wise approaches, pairwise approaches and listwise approaches [22].

Pointwise approaches compute a relevance score for every single

item that is to be ranked individually. �e items are then ranked in a

decreasing order of scores. Pairwise approaches look for disordered

pairs in a ranking, put them in the correct order, until all pairs

are ranked correctly, and thus the entire ranking as well. Listwise

approaches try to optimize the order of the entire list at once and

have information retrieval measures such as NDCG [16] as their

optimization objective.

3 DESIGNING LISTEN AND Q-LISTEN
In this section, we present our design for LISTEN. As LISTEN is

not fast enough to run in production, we subsequently present

Q-LISTEN, a Quick version of LISTEN, for which we train a neural

network to learn the explanation space for us.



3.1 Design decisions
�ere are multiple ways to explain a ranking [10]. One could

explain the entire list at once, in a single statement. However, the

interpretability and usefulness of this approach is questionable.

One could also give contrasting explanations [24]. �is would

lead to explanations in the form of “item A is ranked above item
B, C, D, . . . , because item A has characteristic X that item B does
not have, characteristic Y that C and D do not have and it is ranked
below item . . . because . . . .” One could also compare rankings with

other rankings, e.g., “Ranking A is shown as opposed to ranking
B, because . . . .” Such contrastive explanations easily extend to a

large, clu�ered presentation of the argumentation. We present

explanations that give the main cause(s) of an item’s position in the

ranking. �is choice ensures that the entire ranking is taken into

account, whereas at the same time explanations can be generated

that are easily interpretable by users or developers of the system.

�e aim of this research is to �nd the most important features
for an item’s position in the ranking. �ese are considered as the

explanations. As we cannot provide users with these raw features

and importance scores, we construct a mapping between each fea-

ture and an explanation in natural language. A prerequisite for

this approach is to have interpretable features. Many recommender

systems that run in production use interpretable features. �is does

not imply that our method does not work for systems that use other

types of features, as we can still output the most important fea-

tures. Constructing mappings from features to human interpretable

explanations is a task that we leave for future work.

Another decision that we make is to only report features to the

user that actually increase the score of an item in the ranking. We

do this in order to avoid explanations such as “you see this article
because you do not really like X ,” whereas the article is actually

about topic X . Even though these could be faithful explanations,

they are unintuitive for users of the system. �is approach does

not mean that we only report features with the highest values. E.g.,

intuitively one can expect that if a user follows a topic or newspaper

(high feature value) this should indeed increase the overall ranking

score of the item, but if a user has not given any negative feedback

(low feature value) this should also increase the ranking score.

3.2 LISTEN – Overview
We present the design of LISTEN: a LISTwise ExplaiNer that is

designed to return those features that were most de�ning for an

item’s position in the ranking, keeping the design considerations

presented in the previous section in mind. �e following intuition

will be central: if changing the value of a feature for a certain item
causes the ranking to substantially change, this feature was important
for this item’s position in the ranking, otherwise this feature was not
important. In order to design an algorithm that works according to

this intuition we need to de�ne (1) how we change feature values

and (2) how we measure ranking dissimilarity. As to (1), we dis-

cretize the feature value domains (which we extract from a training

data set). As changing all features in all rankings according to this

discretization is computationally infeasible, we �rst observe the

behavior of feature values on a small training dataset and then

select the most in�uential feature values for all features. �ese

new values we use from then onwards. �is is why we split our

algorithm in a training phase and an explaining phase respectively.

To measure ranking dissimilarity (i.e., item (2)), we choose to use

the AP ranking correlation coe�cient [37] (rather than Kendall’s

τ [17] or Spearman’s rank correlation coe�cient [32]), given by

τAP =
2

N − 1

N∑
i=2

(
C(i)
i − 1

)
− 1. (2)

�e AP ranking correlation coe�cient focusses on the top elements

in the list. �is is important, as we deal with many articles that are

scored and ranked, yet only the top 25 items are selected for the

user. During the explaining process, we cannot limit ourselves to

only this top 25 items, as this would prevent us from measuring

the di�erence between a new feature value that causes an item to

be placed at position 25 and one that causes it to be placed below

position 25. However, changes in the higher regions of the list are

more relevant than changes in the lower regions. �e AP ranking

correlation coe�cient captures this. It ranges from−1 to 1, whereby

−1 means that two rankings are completely opposite and 1 means

that two rankings are exactly equal.

Algorithm 1 gives an overview of the steps taken in LISTEN.

Below, we describe the individual steps of the pipeline in full detail.

We start with the training phase in Section 3.3, followed by the

explaining phase in Section 3.4 and in Section 3.5 we present a

speed-up to be able to run LISTEN in production.

Algorithm 1 Overview LISTEN

1: Training phase (Section 3.3)

2: Find the importance of individual feature values by changing them and

see how these changes a�ect the ranking.

3: Find points of interest.

4: Explaining phase (Section 3.4)

5: Use the points of interest to �nd the most important features by observ-

ing which changes in feature values a�ect the ranking most.

6: Return the most important features.

7: �e most important features are the explanations. Return these to the

users in an understandable way.

3.3 LISTEN – Training phase
�e �rst step of the training phase is to �nd how individual feature

values can a�ect the ranking (see Algorithm 1). We will call this

the disruptiveness of feature values. Algorithm 2 summarizes the

part of the training step where we �nd the disruptiveness of feature

values. We de�ne values each individual feature can take on. �en

we can change one feature at a time according to those values and

measure how this changes the ranking. Based on this, we de�ne

the most disruptive feature values per feature. We decide to only

change a single feature value at a time, as the features Blendle uses

are independent by design. If one cannot make this assumption,

or if one wants to investigate how di�erent feature values work

together, more permutations should be tried, depending on the

degree correlation of the features. Future work should look into

how we can compute this in an e�cient manner.

Let us explain Algorithm 2 in more detail. As a �rst step towards

�nding how to change feature values, we �nd the minimum and

the maximum value for each feature in our training data (line 37

and line 1). Now we proceed to �nding the most disruptive feature

values between these minimum and maximum values (line 38 and

line 8). In order to do so we have to discretize our continuous

ranges, for each feature, and return feature value samples (line 10

and line 27). For this, we distinguish between continuous features,

discrete features and features with prede�ned values. An example



Algorithm 2 LISTEN Training phase - (1) Find the disruptiveness

of feature values

1: function FindMinAndMax

2: for each feature ∈ all features do
3: FindMinValue(feature)

4: FindMaxValue(feature)

5: end for
6: end function
7:

8: function FindDisruptiveness

9: for each feature ∈ all features do
10: FindSampleRange(feature)

11: for each sample value ∈ sample range do
12: for each ranking ∈ all rankings do
13: for each item ∈ ranking do
14: if feature value item , sample value then
15: change feature value

16: CalculateτAP (new ranking)

17: store τAP
18: end if
19: end for
20: end for
21: average all τAP ’s

22: store average τAP
23: end for
24: end for
25: end function
26:

27: function FindSampleRange(feature)

28: if feature ∈ discrete features then
29: return range(FeatureMinValue:FeatureMaxValue, BinSize)

30: else if feature ∈ prede�ned features then
31: return prede�ned values

32: else
33: return range(FeatureMinValue:FeatureMaxValue, BinSize)

34: end if
35: end function
36:

37: FindMinMax

38: FindDisruptiveness

of the la�er feature type is the score the editorial sta� assigns to

an article: 0.3, 0.6 or 0.9. For discrete features (line 28) we select all

integers between the minimum and the maximum value, unless we

exceed a certain bound. In that case we divide the range in larger

intervals and sample a single integer per interval. In Algorithm 2

we represent this with the variable BinSize . I.e., if the bound is

not exceeded BinSize = 1, otherwise BinSize > 1. �is is a hyper

parameter one can choose. For prede�ned feature values we only

use those that are given in the data (line 30). (If there are too many,

one could choose to bound this as well.) For continuous feature

values we discretize the range between the minimum and maximum

values found (line 33). How precisely we discretize this range is

a hyper parameter that we can choose and is mostly motivated

by computation time. We set this hyper parameter to 20. Now,

we loop through the items in the rankings of all users and change

their feature values one by one, according to the feature values we

have just found (lines 11–13). We only change the feature value

if the sample value di�ers from the current feature value, as this

makes the score more sensitive (line 14). For each of these feature

values we compute the τAP (line 16), according to (2). We keep

these values and compute the average (line 21). �is average is

called the disruptive score.

3.3.1 Step 2 – Select points of interest. By gradually changing

all feature values that we have in our data as described above,

we �nd, for each feature, the disruptiveness per sampled feature

value. To increase the computation speed we aim to select only

those feature values with the lowest disruptive scores and discard

feature values with the highest disruptive scores and we aim to have

some spreading over the feature value range. (Recall that low τAP
scores represent dissimilar rankings and thus low disruptive scores

describe disruptive feature values.) If we had any prior knowledge

about the distributions of these disruptive scores, we could �t these

to the disruptive scores we found and select the minima in these

distributions as the most disruptive feature values. However, we

do not have this prior knowledge. �e approach we take instead is

given in Algorithm 3. We call the selected feature values points of
interests (or pois in Algorithm 3).

In Algorithm 3 we divide the range of disruptive scores that we

have found in the previous steps in bins. �e number of bins is

a hyper parameter that we can choose. We use 20 bins. For each

feature value for each feature we look up its disruptive score (“avg

τAP ” in Algorithm 3) that we computed in the previous step. We

compute the bin of this disruptive score (line 8). As high values

for τAP mean that rankings are comparable and low values for τAP
mean that rankings di�er, we only keep feature values that yield

the lowest average τAP -values in their bin (line 9 until line 15) for

the points of interest. �is way we ensure that we select a di�erent

range of feature values, whereas the choice for these feature values

is still motivated by their disruptiveness. If feature values can only

adopt a few prede�ned values we choose to use all these values as

interest points (line 3), up until a certain number which again is a

hyper parameter to tune.

Algorithm 3 LISTEN training phase - (2) Find the points of interest

1: initialization

2: for each feature in all features do
3: if feature ∈ prede�ned features then
4: keep prede�ned feature values as pois values

5: continue

6: end if
7: for each feature value ∈ all feature values do
8: bin = ComputeBin(avg τAP )

9: if bin , empty AND τAP ≤ τAP in bin then
10: put τAP and feature value in bin

11: delete previous τAP and feature value from bin

12: end if
13: if bin == empty then
14: put τAP and feature value in bin

15: end if
16: end for
17: end for
18: return kept feature values as pois values

3.4 LISTEN – Explaining phase
So far we have found the disruptiveness of feature values and we

have selected the points of interest from all these scores. In this

section we present the part of LISTEN where we �nd the most



important features for each item in the ranking. �is is what we

call the explaining phase. We summarize the explaining phase in

Algorithm 4 and explain it in more detail here.

For each new ranking that comes in, we change all of its feature

values (i.e., all feature values for all items in the ranking) accord-

ing to the points of interest (line 1–4). �en we compute the AP

ranking correlation coe�cients for the new ranking that arises

from changing this feature value. We compute the average AP

ranking correlation coe�cients for this feature (line 5–7), in the

same fashion as we described for the training step of our approach

(Algorithm 2). At this stage we distinguish between points of inter-

est that decrease the ranking score (line 8) and ones that increase it

score (line 11), in order to be able to clearly communicate the e�ect

of certain features to the user. In the next step, we calculate the

average AP ranking correlation coe�cients (lines 15 and 16). �e

features that were most disruptive according to this method, are se-

lected as most important features and used as explanations (line 18).

How many features one reports is again a hyper parameter to tune.

In our se�ing LISTEN returns the three most important features.

As a �nal step we normalize the labels (line 19), so that we keep the

relative importances of each important feature in comparison to the

other important features. We choose the continuous approach as

that allows for a more detailed explanation. In our communication

to the users we only report the upward pushing labels for reasons

explained in Section 3.

Algorithm 4 LISTEN explaining phase - Make labels with impor-

tance scores per feature value

1: for each ranking ∈ all rankings do
2: for each item ∈ ranking do
3: for each feature ∈ item do
4: for each pois value ∈ all pois values for feature do
5: if pois value , feature value then
6: change feature value

7: CalculateτAP (new ranking)

8: if new item ranking score < old item ranking score

then
9: add τAP to upwards pushing τAP

10: end if
11: else
12: add τAP to downwards pushing τAP
13: end if
14: end for
15: average upwards pushing τAP and add to upwards pushing

label

16: average downwards pushing τAP and add to downwards

pushing label

17: end for
18: choose most important feature values

19: normalize labels

20: end for
21: end for

3.5 Q-LISTEN to speed up LISTEN
�e computational complexity of LISTEN is O(dnm), with d the

number of documents in the ranking, n the number of features per

document, and m the number of perturbations of feature values

per feature. �is is too high to run LISTEN in production in real-

time. �erefore, we introduce Q-LISTEN. For Q-LISTEN we train

a multilayer perceptron that learns to generate the explanations

Table 2: Heuristic reasons used in Baseline, numbered.
No. Reason description

0 Because you o�en read about CHANNEL.

1 Because o�en read from PROVIDER.

2 Because o�en read from AUTHOR.

3 Because you are interested in CHANNEL.

4 Because we think CHANNEL could be interesting for you.

5 Because we think PROVIDER could be interesting for you.

6 Because you follow CHANNEL

7 Because you follow PROVIDER.

8 Because you seem to like a long read every now and then.

9 �e editors really liked this piece.

10 According to the editors, this is one of the best stories of

the day. No ma�er your preferences.

produced by LISTEN in a supervised se�ing. During the training,

validation and testing phase, we use the ranking data as input

and keep the data that we use for each state isolated. We use the

explanations for these rankings, constructed by LISTEN, as the

corresponding labels. �e ranking data is represented as a matrix

of feature values. Each row in the matrix represents a new item,

ranked in a decreasing order of importance. Each column in the

matrix represents the value for a given feature. We �a�en the

matrix to provide our network with data it can work with. In a real-

time environment we only need our trained Q-LISTEN network to

produce explanations for incoming new rankings.

In experiments on the data described above (see Section 4 for a

more detailed description), Q-LISTEN receives a testing accuracy of

98.7%, i.e., Q-LISTEN is very well able to learn the latent explaining

function. It is worth investigating to what extent it improves the

speed of the pipeline. On a simple notebook (8GB RAM, i5-5200U

processor) it takes around 30 seconds to generate listwise reasons

for an item, given that the points of interest were already found.

Using the neural network, this only takes around 1 millisecond.

Given that we have to generate millions of reasons at production

time, this is a speed-up that changes the run time from “infeasible

to run in production” to “perfectly �ne to run in production.”

4 EXPERIMENTAL SETUP
As explained in Section 1.2, we use a production news recommender

to answer both of our research questions. In this section we give a

description of the heuristic baseline, continue with a description

of the data, and present the design of our neural network that we

use to speed up LISTEN. At the end of this section we present our

experimental setup to answer our second research question.

4.1 Baseline – Heuristic reasons
�e production news recommender we employ for our experiments

already uses some heuristic justi�cations as reasons, given in Ta-

ble 2. We use these as one of the baselines of our research. Properties

of the articles and the user are compared and from this comparison

reasons are constructed. An example of this could be a long article

that is recommended to a user. �is particular user may tend to

read long articles in general and therefore a justi�cation could be

something along the lines of “because you seem to like longer articles.”
Of course, this is not necessarily the real descriptive explanation

for why a user sees this article. �at means this approach is not

faithful. Our new listwise approach solves this issue.



4.2 Data
We extract around 30Gb of historical feature data of users. Amongst

others, this data contains all feature values for all items for approxi-

mately 5,500 users. �is includes both active and less active users. It

is important to have a good mix between these two groups, perhaps

even slightly biased towards active users, as non-active users will

all have very similar feature values.

From this data we select 100 users (active and less active) that

we use for our training data in the training step of LISTEN. We use

the rest of the data for the explaining step. A�er the explaining

step this part of the data is again divided into training, validation

and test data to build the speed up step with the neural networks.

4.3 Feedforward neural networks
We train a straightforward feed forward four layer perceptron with

ReLU activations to parameterize our explaining space. �e dimen-

sionality of each of the layers is 100. We use l2 weight regularization

and a dropout rate of 0.1. We initialize the weights with the Xavier

initializer [9]. We train our network for 6000 iterations with a batch

size of 50 and use the Adam optimizer [18] with a learning rate of

2e−4
. We use a standard mean squared error as our loss function.

4.4 A/B-test to answer RQ2
Our main goal is to produce faithful explanations that explain a

ranking, speci�cally the ranking of news articles produced by the

recommender system of ANONIMYZED. Our goal is not to change

users’ reading behavior by our explanations (e.g., we do not mean to

convince users to read a certain article by showing an explanation).

From the company’s perspective, it is very important to avoid any

negative reading e�ects that may occur because of the explanations.

�erefore we investigate whether the reading behavior of the users

of the news recommender di�ers with the explanation system they

are exposed to. In order to do so, we run an A/B-test on all users

who receive a personalized selection of news articles. Our test

consists of two groups:

(1) a group of users that receive the heuristic reasons,

(2) a group of users that receive the reasons produced by Q-LISTEN.

�e users are equally divided over the two groups. We run the

A/B-test for fourteen days and by strati�ed sampling of users we

make sure that the users are equally divided over groups in terms

of their reading behavior before the start of the test.

5 RESULTS
We look into the faithfulness of our explainer to answer RQ1 and

we answer RQ2 by analyzing the results of our A/B-test.
2

5.1 RQ1 – Are explanations faithful?
As a �rst step, we want to �nd out whether LISTEN produces

faithful explanations. We test this with the ranking function and

the ranking that we introduced in Section 1.

Recall from Section 1 that we want LISTEN to �nd that for both

item d0 and d2 feature x1 was most important. We have two steps

that we need to validate. First, we need to verify whether the general

idea of changing feature values results in the correct behavior.

2
We originally performed our analysis with three groups. We observed no di�erences

whatsoever between these three groups. We choose to report on only the two most

insightful groups in this paper. All numbers are from our original analysis, to ensure

the validity of our conclusions.

Secondly, we need to verify whether using the interest points that

we �nd, also leads to the expected behavior.

Changing feature values. First, we test our approach of changing

feature values, without selecting points of interest. We change

feature values in their entire domain, with steps of 0.01. We �nd

exactly the behavior we were expecting. �e τAP values for the

ranking are found to be

x0 x1 x2

d0 1.0 0.83 1.0
d1 0.64 0.67 0.99

d2 1.0 0.83 1.0

Now, looking at the �rst and the last items in the ranking we see

exactly what we predicted in Section 1. �e ranking cannot change

by changing feature x0 or x2 in their valid ranges. �e ranking can

change if we change value x1 and this causes x1 to have the lowest

τAP value.

Using points of interests. �e �rst validation step is a sanity check.

We also need to validate whether our approach of using only certain

points of interest is faithful. To this end we construct dummy

ranking data. We use the three features that were introduced above

and their domains. We also use the same scoring function. We make

data points (i.e., “items”) by randomly sampling feature values for

each feature. We sample from a range with steps of 0.01.

We want to �nd out whether the number of users in our data

and the number of data points per user in�uence the results. �ere-

fore, we make data for multiple numbers of users and a range of

data points per user. For the number of users we choose from

[5, 10, 20, 100] and for the number of data points we choose val-

ues from [5, 10, 20, 40, 60, 80, 100, 120, 150]. We �nd interest points

and compute the most important feature values for our known

sample ranking based on these interest points. We compute the

accuracy, i.e., how o�en our approach returns the correct feature

values. Because our approach is not deterministic, as we randomly

choose values for the feature values in the data points, we compute

the accuracy twenty times per se�ing (i.e., we construct twenty

datasets per se�ing) and average these.

Figure 1 shows the accuracy scores per number of users per

number of data points. We see no vital di�erences between di�erent

se�ings. We do see that we do not have a 100% score at all times.

�ese lower scores are most o�en caused by the reason returned

for d1. �e disruptiveness of feature x0 and x1 are quite similar for

d1 and sometimes x0 is chosen as the most important feature value.

0 20 40 60 80 100 120 140 160

0

0.2

0.4

0.6

0.8

1

Number of data points

A
v
e
r
a
g

e
a
c
c
u

r
a
c
y

5 users

10 users

20 users

100 users

Figure 1: Average accuracy when �nding points of interest
based on di�erent numbers of users and di�erent numbers
of data points.

In our real data, i.e., the historical feature data, the disruptive-

ness of the di�erent features can also be very similar. �is data,



however, is a lot more structured than the random data that we

have constructed for this dummy experiment. �erefore we can a

lot be�er rely on the found disruptiveness of feature values, as long

as we make sure that we use a representative sample of the data.

In our case, this means that we need to include active users and

less active users. Secondly, if features have very similar disruptive

values, these features are of very similar importance in the end.

�is also reduces the impact on faithfulness reporting the feature

value that was actually slightly less important than another feature

value, especially as we calculate more than one important feature

as reason.

5.2 RQ2 – Is reading behavior impacted?
Figure 2 shows the number of reads per day of users in both groups.

�e results are normalized for competitiveness reasons. We com-

pute the signi�cance of the di�erences between the two groups

with a randomization test and �nd that none of the results are

signi�cant.

0 2 4 6 8 10 12 14

0

1

2

3

·10
−2

Day

F
r
a
c
t
i
o

n
o

f

a
l
l

r
e
a
d

s

Heuristic

Q-LISTEN

Figure 2: Reads of users per day during the experiment.
Only users with a personalized selection are included. Nor-
malized over all days and all groups.

We also compare the number of reasons users see and how that

a�ects their behavior. For example, we look at how o�en users

open an article within two minutes a�er seeing a reason. �is

may indicate that the reason contributed to their decision to open

an article. We also look at the number of times users look at a

reason within twenty minutes a�er reading an article. �is may

indicate that users are wondering why this particular article was

selected for them. Table 3 shows these results. Again we computed

the signi�cance scores and none of the observed di�erences were

found to be signi�cant.

Table 3: Reasons seen in both groups and the e�ects on user
behavior.

Heuristic Q-LISTEN

Percentage of reasons seen (% of

total reads in group)

3.55 3.51

Percentage of reasons seen (% of

total reasons)

34.1 32.0

Reasons per user (of users that see

reasons)

1.83 (±1.61) 1.72 (±2.19)

Article opened within two min-

utes a�er seeing a reason (% of all

reasons seen)

12.1 11.6

Reasons seen within twenty min-

utes a�er opening an article (% of

all reasons seen)

11.0 10.7

0 1 2 3 4 5 6 7 8 9 10

0

20

40

Heuristic

P
e
r
c
e
n

t
a
g

e

0 1 2 3 4 5 6 7 8 91011

0

20

40

Q-LISTEN

P
e
r
c
e
n

t
a
g

e

Figure 3: Reasons clicked before opening the article, see Ta-
ble 1 and 2 for a mapping.

Figure 3 shows how o�en the individual reasons are seen in each

group. �e numbers of the reasons correspond to the mapping

presented in Table 1 and 2. Reason 9, 10 and 11 in the Q-LISTEN

group respectively correspond to two reasons that are added if users

see articles based on a diversi�cation algorithm and a must-read

reason that users see for the must-reads (reason 10 in Table 2). We

can see that the must-read reason is o�en shown. Must-reads occur

at the beginning of a users personal selection which is likely to

explain this peak. �ese results show that the reading behavior of

users is not a�ected by the type of algorithm and that it is safe to

use LISTEN, as the most faithful explainer, in production.

6 DISCUSSION AND CONCLUSION
In this study, we have investigated the explainability of ranking

algorithms. To this end, we introduced LISTEN and Q-LISTEN.

LISTEN �nds the most important features for an item’s position in

the ranking and returns these as explanations. Q-LISTEN allows

us to generate explanations for items in the ranking in production

in real time, by using a neural network that is trained to learn the

explanation space generated by LISTEN. An A/B-test with reasons

produced by di�erent types of explanation systems showed that the

reading behavior of users does not di�er depending on the type of

explanations they see. �is shows that it is safe to use (Q-)LISTEN

in production. (Q-)LISTEN is the only method to produce faithful

reasons for the current task. �erefore, from a transparency point

of view, (Q-)LISTEN outperforms the baseline and is the preferred

method to use. Although we have tested (Q-)LISTEN in the context

of rankings for a news recommender, the approach also generalizes

to other ranking and recommender systems. Additional research

needs to focus on the explainability of systems that make use of less

interpretable features, as it will be more di�cult to explain these

features to users. Also more research needs to be conducted on

systems that use more features than the current one or features that

are correlated as they may interact. Taking all these features and

combinations of these features into account increases the number

of comparisons LISTEN needs to make and it blows up the space

that is to be learned by the neural network. We need to �nd out

how this a�ects the ability of the network to learn the underlying

space.

Acknowledgements �is research was supported by Ahold Delhaize, Amsterdam Data Science,

the Bloomberg Research Grant program, the China Scholarship Council, the Criteo Faculty Research

Award program, Elsevier, the European Community’s Seventh Framework Programme (FP7/2007-

2013) under grant agreement nr 312827 (VOX-Pol), the Google Faculty Research Awards program,

the Microso� Research Ph.D. program, the Netherlands Institute for Sound and Vision, the Nether-

lands Organisation for Scienti�c Research (NWO) under project nrs CI-14-25, 652.002.001, 612.001.-

551, 652.001.003, and Yandex. All content represents the opinion of the authors, which is not neces-

sarily shared or endorsed by their respective employers and/or sponsors.



REFERENCES
[1] Behnoush Abdollahi. 2017. Accurate and justi�able: new algorithms for explain-

able recommendations. (2017).

[2] Roberto Ba�iti. 1994. Using mutual information for selecting features in su-

pervised neural net learning. IEEE Transactions on neural networks 5, 4 (1994),

537–550.

[3] Mustafa Bilgic and Raymond J. Mooney. 2005. Explaining recommendations:

Satisfaction vs. promotion. In Beyond Personalization Workshop, IUI, Vol. 5. 153.

[4] Christopher J.C. Burges. 2010. From RankNet to Lambdarank to LambdaMart:

An overview. Learning 11, 23-581 (2010), 81.

[5] Manoranjan Dash and Huan Liu. 1997. Feature selection for classi�cation. Intel-
ligent data analysis 1, 1-4 (1997), 131–156.

[6] Gianna M Del Corso, Antonio Gulli, and Francesco Romani. 2005. Ranking a

stream of news. In Proceedings of the 14th international conference on World Wide
Web. ACM, 97–106.

[7] Finale Doshi-Velez and Been Kim. 2017. Towards a rigorous science of inter-

pretable machine learning. arXiv preprint. arXiv preprint arXiv:1702.08608 (2017).

[8] Xiubo Geng, Tie-Yan Liu, Tao Qin, and Hang Li. 2007. Feature selection for

ranking. In Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 407–414.

[9] Xavier Glorot and Yoshua Bengio. 2010. Understanding the di�culty of training

deep feedforward neural networks. In Proceedings of the thirteenth international
conference on arti�cial intelligence and statistics. 249–256.

[10] Riccardo Guido�i, Anna Monreale, Franco Turini, Dino Pedreschi, and Fosca

Gianno�i. 2018. A survey of methods for explaining black box models. CoRR
abs/1802.01933 (2018).

[11] Taher H Haveliwala. 2003. Topic-sensitive pagerank: A context-sensitive ranking

algorithm for web search. IEEE transactions on knowledge and data engineering
15, 4 (2003), 784–796.

[12] Yotam Hechtlinger. 2016. Interpretation of Prediction Models Using the Input

Gradient. arXiv preprint arXiv:1611.07634 (2016).

[13] Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Je� Donahue, Bernt

Schiele, and Trevor Darrell. 2016. Generating visual explanations. In European
Conference on Computer Vision. Springer, 3–19.

[14] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. 2000. Explaining col-

laborative �ltering recommendations. In Proceedings of the 2000 ACM conference
on Computer supported cooperative work. ACM, 241–250.

[15] Guichun Hua, Min Zhang, Yiqun Liu, Shaoping Ma, and Liyun Ru. 2010. Hier-

archical feature selection for ranking. In Proceedings of the 19th international
conference on world wide web. ACM, 1113–1114.

[16] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation

of IR techniques. ACM Transactions on Information Systems 20, 4 (2002), 422–446.

[17] Maurice G Kendall. 1938. A new measure of rank correlation. Biometrika 30, 1/2

(1938), 81–93.

[18] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-

tion. arXiv preprint arXiv:1412.6980 (2014).

[19] Pang Wei Koh and Percy Liang. 2017. Understanding black-box predictions via

in�uence functions. arXiv preprint arXiv:1703.04730 (2017).

[20] Han-Jiang Lai, Yan Pan, Yong Tang, and Rong Yu. 2013. Fsmrank: Feature

selection algorithm for learning to rank. IEEE transactions on neural networks
and learning systems 24, 6 (2013), 940–952.

[21] Léa Laporte, Rémi Flamary, Stéphane Canu, Sébastien Déjean, and Josiane Mothe.

2014. Nonconvex regularizations for feature selection in ranking with sparse

svm. IEEE Transactions on Neural Networks and Learning Systems 25, 6 (2014),

1118–1130.

[22] Tie-Yan Liu and others. 2009. Learning to rank for information retrieval. Foun-
dations and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[23] Arnaz Malhi and Robert X Gao. 2004. PCA-based feature selection scheme

for machine defect classi�cation. IEEE Transactions on Instrumentation and
Measurement 53, 6 (2004), 1517–1525.

[24] Tim Miller, Piers Howe, and Liz Sonenberg. 2017. Explainable AI: Beware of

inmates running the asylum. In IJCAI 2017 Workshop on Explainable Arti�cial
Intelligence (XAI). 1–5.

[25] Cataldo Musto, Fedelucio Narducci, Pasquale Lops, Marco De Gemmis, and Gio-

vanni Semeraro. 2016. ExpLOD: A Framework for Explaining Recommendations

based on the Linked Open Data Cloud. In Proceedings of the 10th ACM Conference
on Recommender Systems. ACM, 151–154.

[26] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. �e
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford

InfoLab.

[27] Pearl Pu and Li Chen. 2007. Trust-inspiring explanation interfaces for recom-

mender systems. Knowledge-Based Systems 20, 6 (2007), 542–556.

[28] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. Why Should I

Trust You?: Explaining the Predictions of Any Classi�er. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 1135–1144.

[29] Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. 2017. Right

for the Right Reasons: Training Di�erentiable Models by Constraining their

Explanations. arXiv preprint arXiv:1703.03717 (2017).

[30] Claude E. Shannon. 1948. A mathematical theory of communication. Bell System
Technical Journal 27, 3 (1948), 379–423.

[31] Boris Sharchilev, Yury Ustinovsky, Pavel Serdyukov, and Maarten de Rijke. 2018.

Finding in�uential training samples for gradient boosted decision trees. arXiv

preprint arXiv:1802.06640. (2018).

[32] Charles Spearman. 1904. �e proof and measurement of association between

two things. �e American journal of psychology 15, 1 (1904), 72–101.

[33] Maartje ter Hoeve, Mathieu Heruer, Daan Odijk, Anne Schuth, Martijn Spi�ers,

Ron Mulder, Nick van der Wildt, and Maarten de Rijke. 2017. Do News Consumers

Want Explanations for Personalized News Rankings?. In FATREC Workshop on
Responsible Recommendation Proceedings.

[34] Nava Tintarev. 2007. Explaining recommendations. In International Conference
on User Modeling. Springer, 470–474.

[35] Nava Tintarev and Judith Mastho�. 2007. A survey of explanations in recom-

mender systems. In Data Engineering Workshop, 2007 IEEE 23rd International
Conference on. IEEE, 801–810.

[36] Jesse Vig, Shilad Sen, and John Riedl. 2009. Tagsplanations: explaining recom-

mendations using tags. In Proceedings of the 14th international conference on
Intelligent user interfaces. ACM, 47–56.

[37] Emine Yilmaz, Javed A. Aslam, and Stephen Robertson. 2008. A new rank

correlation coe�cient for information retrieval. In Proceedings of the 31st annual
international ACM SIGIR conference on Research and development in information
retrieval. ACM, 587–594.

[38] Lei Yu and Huan Liu. 2003. Feature selection for high-dimensional data: A fast

correlation-based �lter solution. In Proceedings of the 20th international conference
on machine learning (ICML-03). 856–863.


	Abstract
	1 Introduction
	1.1 Approaches to explaining rankings
	1.2 Problem setting

	2 Related work
	2.1 Explainability in machine learning
	2.2 Feature selection
	2.3 Learning to rank

	3 Designing LISTEN and Q-LISTEN
	3.1 Design decisions
	3.2 LISTEN – Overview
	3.3 LISTEN – Training phase
	3.4 LISTEN – Explaining phase
	3.5 Q-LISTEN to speed up LISTEN

	4 Experimental setup
	4.1 Baseline – Heuristic reasons
	4.2 Data
	4.3 Feedforward neural networks
	4.4 A/B-test to answer RQ2

	5 Results
	5.1 RQ1 – Are explanations faithful?
	5.2 RQ2 – Is reading behavior impacted?

	6 Discussion and Conclusion
	References

